
Hardware Evaluation Outreach: Application development
Challenges Now and for the Exascale Era

Ray Bair1, Jeanine Cook5, David Donofrio2, Jeff Kuehn3, Shirley Moore4 1

1Argonne National Laboratory, Chicago, Illinois, USA
2Lawrence Berkeley National Laboratory, Berkeley, California, USA
3Los Alamos National Laboratory, Los Alamos, New Mexico, USA

4Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
5Sandia National Laboratories, Albuquerque, New Mexico, USA

April 12, 2019

SAND2019–4136 R

1



1 Introduction

The intent of this document is to assist the programmer in understanding details of contemporary and Ex-
ascale hardware system design and how these designs provide opportunities and place constraints on next-
generation simulation software design. We attempt to clarify hardware organization and component details
for our most current and Exascale systems to help program developers understand how software needs to
change in order to take best advantage of the performance available.

Exascale success is specifically defined for ECP as a 50x improvement over baseline in the aggregate
“capability volume” on several KPP axes, of which raw floating point performance is only one, but also
includes characteristics such as problem size, system memory size, node memory size, power, and efficiency.
This multi-axis approach is particularly important to understand in the context of delivered improvements
in real applications, since, for instance, the floating point computation may comprise less than 10% of the
actual computational work required.

Given the Exascale requirements and the constraints these requirements put on the performance expec-
tations of fundamental system components, the programmer will be forced to re-think several application
implementation details in order to achieve exaflop performance on these systems. The remainder of this
document aims to present more detail on Exascale era system hardware and the specific areas that the pro-
grammer should address to extract performance from these systems. We attempt to give the programmer
guidance at both a high- and low-level, providing some abstract suggestions on how to refactor codes given
the expected system architectures and some low-level recommendations on how to implement these modi-
fications. We also include a section on training resources that are helpful for both programmers that are just
beginning to understand code modifications for contemporary and Exascale systems and for those that have
done some refactoring and are now trying to extract maximal application performance from these systems.

2 Programmer Challenges for the Exascale Era

The previous decades have been witness to an incredible increase in computing performance - from the
relentless rise of single threaded performance to the multi- and many-core scaling that is still happening
today. However, due to the convergence of multiple technical and physical limitations we see that future
HPC systems cannot continue to scale using general purpose processors alone.

Current technology trends do not point to an exascale system being feasible by 2024 without the use of
accelerators. As an example, the two IBM Power9 CPUs in OLCF Summit’s node deliver a peak performance
of 1.1TF compared with the 15TF delivered by just two of the six GPUs in a node. Hypothetically, building
a relatively large system composed of 65,000 dual socket Power9 nodes would only deliver 71.5PF peak
performance and the CPUs alone would consume almost 13MW - as much as the entire 200PF Summit
system. It is clear that even a 10X increase in CPU performance will still fall well short of the goal of an
exaflop capable system by 2021.

For application developers this focus on accelerators presents both a challenge and an opportunity. While
it will become ever more critical to ensure larger sections of an application are able to take advantage of
accelerators, both programming environments and hardware features are working to ease the transition.
Below is a partial list of challenges exposed to application developers by hardware architectural shifts:

• Increasing Parallelism: In order to capture peak performance on an exascale class machine an appli-
cation will need to exploit incredible levels of parallelism in terms of flops, memory accesses and inter-
connect bandwidth. Considering a reasonable CPU clock speed of O(2GHz) an exascale class system
will have O(108) floating point units. Given the latency of floating point units, an application domi-
nated by flops would need to expose O(109)-way parallelism. While memory bandwidth has increased
dramatically with the availability of HBM to O(2TB/s) the latency to access memory has remained rel-
atively flat at O(200ns). With this ratio, it is necessary to have 400KB worth of loads in flight at all times
- this translates to 50,000 DP Floats. Network injection bandwidth continues to increase, although not
as quickly as node performance. In order to fully saturate an HPC interconnect multiple processes will

2



need to be injecting data simultaneously. This applies to both CPUs and accelerators - both will require
multiple threads dedicated to off-node communication.

• Data Locality: With the majority of performance being accessible through accelerators it is necessary
for the user to strongly consider the locality of their data. Two options will be available - manual par-
titioning and explicit management of locality or reliance on a runtime to automatically migrate pages
from host to accelerator. In all cases, minimizing data movement between host and the accelerator will
be most advantageous, however, relying on runtimes to perform automatic migration may result in
strong NUMA penalties.

• Machine Balance: Even with increases in memory bandwidth, most nodes will continue to see com-
pute (flops) scale faster than the available bandwidth. This drives application developers to push
their codes to simultaneously minimize unnecessary data movement while also attempting to drive
the memory interface as close to the limit as possible. Note that this balancing of compute and band-
width can be applied to all levels in the memory hierarchy - including caches, HBM, DDR, etc. While
memory bandwidth has increased, memory capacity is not keeping pace. This leads to a new ratio
for developers to balance - bytes of capacity to bytes of bandwidth. In current server class CPUs it
takes O(1 sec) to touch every address in memory - i.e. 128GB of DDR could be accessed in 1 second at
128GB/s. However, with memory bandwidths approaching O(2 TB/s) and capacities in the O (10s) GB
it becomes possible to touch every address within HBM in milliseconds. Again, this drives application
developers to maintain good control over data movement and locality. With respect to problem size,
current system designs operating today have memory sizes on the order of 1PB, O(1015 bytes), and it
is very easy to imagine that an exascale system could extend this to 10PB, O(1016) bytes. However, the
cost in dollars and power of both memory and cores continues to increase, pushing per node memory
capacity to at best remain constant and to more likely decrease.

3 Programming Recommendations

This section aims to provide both high- and low-level recommendations to programmers for reasoning
about/developing/refactoring applications to execute more efficiently on most contemporary, very near-
term, and Exascale timeframe systems. We start with high-level suggestions and strategies that application
developers must consider based on hardware trends, and follow this with some additional lower-level ap-
plication refactoring suggestions to better take advantage of these hardware features.

The following is an outline of hardware trends that are beginning to appear in some form on the most
current systems, but will continue to move along these paths into the Exascale era. We describe the trend
and how applications should respond to this trend to extract adequate performance.

1. Core counts per socket will increase modestly, with a likely maximum of around 64 cores/socket. For
processor systems, the primary sources of computational performance will come from the acceleration
units and/or the exceptionally wide SIMD units per CPU core (8 to 16 Double Precision words). Appli-
cations will need to exploit wide SIMD through extracting as much vectorization as possible. However,
maximal performance will only be attained through implementing codes on accelerators.

2. Performance will come primarily from accelerators, and in the Exascale timeframe, these will be GPU
technologies that may be more optimized for compute than in prior generations. Developers should
use existing systems such as Summit to port and optimize their codes on GPUs now. A common trend
is a unified/coherent memory between CPUs and GPUs, creating the concept of “supernodes.” Expect
nodes to comprise more GPUs than CPUs and that GPUs can directly communicate. Accelerators will
diversify beyond Exascale.

3. Nodes will make use of HBM (high bandwidth memory) as the primary memory tier and in the 2021
exascale timeframe, HBM will have very limited capacity in comparison to DDR memories, offering

3



a Bytes-to-FLOP ratio < 0.01 (a factor of 10x to 100x lower capacity per peak execution rate in com-
parison to earlier projections). HBM memory capacity may be supplemented with a near capacity tier
composed of additional channels of DDR4 or DDR5 memories. This will exacerbate NUMA effects
that will have to be managed by the programmer. Developers need to really understand their data,
its size, and how it is used throughout the computation to understand how to place data to optimize
locality. This may require refactoring data structures and the computation that operates on it. This
HBM capacity limitation will likely remain until packaging issues are resolved.

4. Non-volatile storage will look as if it were in the memory address space rather than going through a
block I/O device (known as storage class memory). Not only is this more convenient (now you can
memcopy() from a volatile data array to a non-volatile data array), it is also lower latency and more
efficient because you no longer need to go through a deep software stack to effect storage.

5. Rack disaggregation strategies driven by the larger datacenter market may be implemented in some
systems, which has driven the explosion of memory fabric technology concepts such as HPE’s Gen-Z,
IBM’s Open-CAPI, and NVIDIA’s NVLink. These high performance fabrics enable flexible configura-
tion of hardware resources within a rack by supporting formation of customized supernodes. For ECP,
this feature could enable applications to configure “fat nodes” or “thin nodes” from rack resources,
depending on their requirements. However, disaggregation will exacerbate NUMA effects for large
node configurations. The memory fabrics being designed for datacenters include integrated hardware
support for a global address space model for data movement. Global Address Space (GAS) makes non-
local memory globally visible to threads within an application or hardware domain, although it might
not be cache coherent. Advantages include lower overhead for messaging and enabling lightweight
GPU threads to participate as peers in interprocessor communication. The disadvantage of GAS is that
it does not offer specific acceleration for MPI. Vendors have not finalized the GAS communication and
synchronization primitives, and there is a risk that they may not be usable by MPI3 RMA or will be
different enough that they may not be performant.

The next sections dive deeper into programming considerations given the observed and expected changes
in system hardware. These hardware/system details cover our most contemporary systems through the
expected Exascale systems.

3.1 Extracting Parallelism

As mentioned in Section 2, Exascale era systems will require extraction of massive application parallelism in
order to achieve performance. This parallelism requirement is FP-, memory-, and network driven. Applica-
tions will need to be decomposed at multiple levels into threads of execution that can drive the O(109)-way
parallelism provided by FPUs (floating-point units) and the 400KB of loads that memory will allow these
systems to sustain. Multiple processes will also be required to drive the network injection bandwidths that
will be available. Problem decomposition will have to be done at multiple levels and at finer grain than in the
past in order to take advantage of the available parallelism and to achieve the performance gains expected
by an exascale system.

Good, high-level advice in this area and many others is for programmers to modify their existing codes
to run well on existing contemporary machines. Systems such as ORNL’s Summit support high levels of
parallelism through high bandwidth memory and GPU accelerators. Leveraging existing frameworks such
as OpenMP, Kokkos, and Raja work for extracting CPU and accelerator parallelism and will likely work well
on future systems. These frameworks limit the programmers exposure to portability issues by abstracting
the complexity of the underlying hardware into the programming interface. OpenMP may be a reasonable
choice of framework. While it may not deliver performance, it will likely be supported on future platforms.

Lower-level advice on extracting parallelism involves both defining finer-grained threads of execution
and modifying data structures to enable these threads to efficiently store and operate on the data. An exam-
ple of a multi-level problem decomposition is the following:

4



1. The top-level is a MPI rank, which is how we’ve decomposed parallelism in CPU systems for decades.

2. Intermediate-level parallelism uses cores or accelerators to execute threads within each MPI rank.
These core/accelerator threads can be considered a tile of execution assigned to a core or an accel-
erator. In support of tiles, data structures may be represented as an array-of-structs-of-arrays, where
each structure represents a tile.

3. The lowest-level parallelism is extracted within each thread through dense SIMD loop computation
that takes advantage of the vast number of wide vector units expected to be available in next-gen
systems.

To fully realize parallelism, there must be the ability to place multiple tiles on a single MPI rank, the
ability for each MPI rank to have a tile computed by a thread, and the ability for each thread to compute
dense SIMD. The size and number of tiles must be flexibly varied to accommodate different problem sizes.

Load balancing concerns may drive more than one intermediate level of parallelism above or below the
tile level, or it may dictate a larger number of tiles based on application drivers. In some applications, where
the amount of computation varies among tiles, an active load balancer may be required to distribute tiles to
ranks and threads.

3.1.1 Loop Structure Recommendations

Future architectures will support SIMD-like features with varying degrees of start-up cost for SIMD-loops.
Because of the variable start-up expense for these loops, large trip-counts and large operation counts on the
inner-most loops are desirable. Loop-carried dependencies should be avoided to help the compiler extract
locality as discussed below. This dictates:

1. High trip counts: minimum inner-loop iterations ∼ 32− 2048

2. High number of arithmetic operations per iteration count: ∼ 100− 1000 operations/iteration

Start-up costs are expected to improve in future generations, but operation density within inner-loops will
still need to remain high.

3.1.2 Data Structure Recommendations

As mentioned above, in support of the tile abstraction for parallelism decomposition, data structures may
be represented as an array-of-structs-of-arrays, where each structure represents a tile. We also stated that
the size and number of tiles must be flexibly varied to accommodate different problem sizes. A reasonable
expectation is that #tiles∗ tilesize will be roughly consistent with 2X increase at each system generation, but
with a trend toward increasing on future systems to the limit of on-package memory (HBM). Data copying
should be avoided – attempt to place the data near the computational element.

All low-level data structures supporting SIMD-loops should be array-like and designed to avoid loop-
carry dependencies within the loops that might break SIMD optimization opportunities. As long as loop-
carry dependencies are avoided, we expect compilers to be capable of loop-fission if required to extract
locality, however, loop-fusion is, in practice, more difficult for the compiler to perform automatically.

3.2 Data Movement and Locality Considerations

Data movement is, and will continue, to be a key part of performance optimization and as systems trend to-
wards greater heterogeneity the ability to flexibly partition an application across various compute resources
will allow greater performance scaling on the exascale machine regardless of node configuration. With this
in mind, programmers will continue to strongly consider locality as they develop applications. One critical
component in this partitioning will be the disparate bandwidth/capacity capabilities presented by various
memory technologies. The trade-off between memory capacity and bandwidth as seen in contemporary sys-
tems will persist as High-bandwidth memories (HBMs) will continue to provide increased bandwidth albeit

5



Acc
Units

DDR

CPU
Cores

HBM

Network

(a) Potential node architecture with asymmetric
memory organization. CPU connected to capac-
ity (DDR) memory only, HBM access exclusively
through accelerators. Accelerator can access DDR
memory as well. Strong incentive to run majority of
code on accelerator.

CPU
Cores

Acc
Units

HBM

Network

(b) Potential node architecture with symmetric mem-
ory organization. Vast majority of performance still
provided by accelerator, however, CPU now has ac-
cess to HBM. Overall node memory capacity severely
impacted due to limitations imposed by HBM capac-
ity.

Figure 1: A physical view of two node architectures illustrating how the CPU and accelerator are connected
to capacity vs. high bandwidth memory

with lower capacity when compared to DDR. Physical constraints, such as packaging, ensure HBM capacity
will likely be limited to O(10s)GB in the near term, eventually approaching O(100)GB. These capacity limita-
tions are driving the implementation of heterogeneous memory systems that combine HBM for performance
while simultaneously providing DRAM or NVM for capacity off-package. While movement/coherence be-
tween these memory technologies may be automatically managed by a combination of hardware features
and system software the programmer should pay close attention to where data is stored / accessed to obtain
the best performance.

Figures 1 and 2 illustrate potential node organization from both a hardware (physical) perspective as
well as a software perspective with respect to how memory is connected / partitioned between CPU and
accelerators. While the organization of HBM and DRAM with respect to the CPU and accelerators is not
fully known for exascale era systems the two primary proposals, from a software perspective, are shown
in Figures 2a and 2b. In Figure 2a, the majority of memory capacity is attached to the CPU and while the
accelerators can read DDR the CPUs cannot access the HBM creating non-symmetric memory access. Here,
the programmer must explicitly and manually manage locality and should try to minimize the amount of
data moved between host and device. Figure 2b shows an organization where HBM can be accessed by
both CPU and accelerators, making memory access symmetrical. Capacity memory may be provided by
NVM or other technology that has significantly lower bandwidth than HBM. In addition, a node with this
configuration will suffer from limited overall memory capacity due to physical constraints imposed by HBM
technology discussed earlier. In this case, locality is likely managed by the runtime, with strong NUMA
effects and penalties. In both organizations, networking is done through the host CPU.

While connectivity between accelerators and CPUs continues to improve moving both computation and
data between them will remain expensive. Taking current GPU-based machines as a proxy for future exascale
systems it can be observed that it is advantageous to move as much code as possible to the accelerator and
view the GPU as the primary computational element rather than as an offload accelerator. For example, the
time required to launch a kernel on a GPU is O(10us); in this time a modern CPU can easily execute O(10K) to
O(100K) instructions. This implies that the kernel invoked on the GPU must execute for a significant amount
of time to amortize the considerable latency/overhead in spawning. GPUs continue to trend towards being
optimized for greater computational performance in lieu of 3D graphics performance while simultaneously
improving their connectivity to the CPU and other GPUs. Overall, the best preparation for future exascale
systems is to begin porting codes to multi-GPU nodes such as those found on Summit / Sierra.

6



Acc
Units

DDR

CPU
Cores

HBM

Network

(a) Asymmetric organization requires user to explic-
itly manage locality and pay careful attention to par-
titioning while minimizing data movement between
CPU and accelerator memories.

Unified Memory

CPU
Cores

Acc
UnitsNetwork

(b) Symmetric memory organization allows runtime
to manage locality for programmers. While conve-
nient, there may be very strong NUMA effects and
penalties if close attention is not paid to producer /
consumer relationships.

Figure 2: A software point of view of two node architectures with differing memory organizations

3.3 Multi-GPU Considerations

Accelerators offer the best path to an exascale system that fits within the target power budget. It is likely that
as in current systems, the exascale system will contain multiple accelerators per node. The accelerators may
or may not be homogeneous and looking beyond exascale this heterogeneity is likely to increase. As a proxy
for this increase in accelerator count we look at current multi-GPU node systems, such as OLCF’s Summit,
as a way for application developers to begin reasoning about programming models and tradeoffs.

When targeting a multi-GPU node it is important to consider your parallelization strategy, below are four
options with their associated tradeoffs:

• Single Thread, Multiple GPUs: In this conceptual model a single thread will send data to the kernel
that needs it, regardless of which GPU the kernel is executing on. This approach can require the de-
veloper to add additional loops to the code to manage all the devices and has the undesirable result of
the CPU becoming a bottleneck as it is likely unable to stream data to multiple GPUs as fast as it can
be consumed. This leads to underutilization of the node and is, in general, an undesirable approach.

• Multiple Threads, Multiple GPUs: Similar to the Single Thread model, this is relatively simple to
conceptualize and relies on using OpenMP, Pthreads, or a similar model on the CPU where each thread
manages its own GPU. This allows for a simple mapping of thread to device but does have the potential
to conflict with existing threading in the application - be sure to pay close attention to affinity. This
approach can realize improved utilization when compared to the Single Thread model.

• Multiple Ranks, Single GPU: If your application already makes use of MPI a straightforward model
is to map each rank to a single GPU. Assigning multiple ranks to a node may allow use of multiple
(all) GPUs. This may allow a developer to re-use existing domain decomposition but attention must be
paid to MPI placement in order to maintain performance.

• Multiple Ranks, Multiple GPUs: This is the most complex of the four models and allows each rank on
a single node to manage multiple GPUs within a node. This method allows all GPUs to share common
data structures and enable direct communication between GPUs. While this model is quite challenging
to get correct and is recommended to be used only when absolutely needed it will likely deliver the
highest performance.

Section 4 provides links to significantly more detailed training material provided by both ECP as well as
multiple DOE HPC Facilities.

7



4 Training Resources for Application Development: Getting Started and Fur-
ther Optimization

A wealth of information is available on best practices for developing code and obtaining optimal perfor-
mance on pre-exascale computers, with an eye toward the exascale systems. Here we provide a starting
point for exploration of DOE classes organized by the Exascale Computing Project and the large DOE com-
puting facilities. Most of the upcoming classes are open to all, though some have limited seats. In many
cases slides and video are available online from past classes. You can also expect to see additional classes
sponsored by the Hardware Evaluation team focused on other topics discussed above.

The ECP IDEAS Project is a good source of webinars, with an ongoing series called Best Practices for
Software Developers (https://ideas-productivity.org/events/hpc-best-practices-webinars/). Webinars cov-
ering topics relevant to the discussion above include:

• Parallel I/O with HDF5: Overview, Tuning, and New Features

• Quantitatively Assessing Performance Portability with Roofline

• Basic Performance Analysis and Optimization – An Ant Farm Approach

• An Introduction to High-Performance Parallel I/O

Comprehensive training in performance portability using Kokkos is available from time to time at DOE
Labs, ECP meetings, and other events. RAJA, which is also used for performance portability, might be useful
to some developers. Resources on these are:

• Syllabus for a recent multi-day course at NERSC:
https://www.nersc.gov/users/training/events/performance-portability-with-kokkos-march-26-29-2019/

• Shorter overview of Kokkos can be found on Youtube:
https://www.youtube.com/watch?v=MrMgECniQhQ

• Tutorial on the RAJA performance portability abstraction layer:
https://extremecomputingtraining.anl.gov/speakers/rich-hornung-llnl/

Other really useful resources include:

• The Argonne Training Program on Extreme-Scale Computing provides ”intensive, two-week training
on the key skills, approaches, and tools to design, implement, and execute computational science and
engineering applications on current high-end computing systems and the leadership-class computing
systems of the future.” Web site for applications dates and the syllabus:
https://extremecomputingtraining.anl.gov/.
The web site also provides links to the videos from past training sessions.

• The list of training and tutorial programs at the Oak Ridge Leadership Computing Facility (OLCF):
https://www.olcf.ornl.gov/for-users/training/,
including archives of class videos relevant to recent large-scale machine deployments.

• The National Energy Research Scientific Computing Center (NERSC) provides targeted training:
https://www.nersc.gov/users/training/events/, with recordings of past sessions.

Acknowledgement

This work was supported by the Exascale Computing Project (ECP), Project Number 17-SC-20-SC, a collab-
orative effort of two DOE organizations, the Office of Science and the National Nuclear Security Adminis-
tration, responsible for the planning and preparation of a capable exascale ecosystem including software,

8



applications, hardware, advanced system engineering, and early testbed platforms, to support the nation’s
exascale computing imperative.

Sandia National Laboratories is a multimission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

9


